NDS 2018 Section 3.3 Bending Member - Flexure
The scope of this module is to calculate the sawn lumber beam bending capacity. The building code subsections required include:
- NDS 2018 Section 3.2 Bending Members - General
- NDS 2018 Section 3.3 Bending Members - Flexure
- NDS 2018 Section 4 Sawn Lumber
- NDS 2018 Supplement Table 4B and 4D Adjustment Factors and Reference Design Values
Assumptions and limitations
- ASD method
- Douglas Fir only
- Rectangular section, not notched or tapered
- Beam stability requirements in NDS 2018 Section 4.4.1.2 must be met
- Beam sizes limited to 6”, 8”, 10”, 12”, 14”
Design Codes
- AWC-NDS (2018), National Design Specification (NDS) for Wood Construction 2018 Edition. American Wood Council, Leesburg, VA.
- AWC-NDS (2021), National Design Specification (NDS) Supplement: Design Values for Wood Construction 2018 Edition. American Wood Council, Leesburg, VA.
Inputs parameters
Design Geometry Input
- b[in]: Rectangular dimension 1.
- d[in]: Rectangular dimension 2.
Material Properties Input
Take Fb from Reference Design Values
Bending reference design value
- \(F_b\) : Bending design value
Wood adjustment factors
Take these parameters from Adjustment Values
-
\(C_D \) : Load duration factor. Recommended value: 1 for D+L combination. Refer to (2018 NDS, 2018) - Section 2.3.2
-
\(C_M \) : Wet service factor. Recommended value: 1 for moisture content less than 19% for an extended time period. Refer to (2018 NDS, 2018) - Section 4.3.3
-
\(C_t \) : Temperature factor. Recommended value: 1 for not exposed to temperatures larger than 150 F. Refer to (2018 NDS, 2018) - Section 4.3.4
-
\(C_L \) : Beam Stability Factor. Assumed value:1 since the beam meets the requirements of NDS 2018 Section 4.4.1.2. Refer to (2018 NDS, 2018) - Section 3.3.3.8
-
\(C_F \) : Size factor. Recommended value: 1 to be conservative. Refer to (2018 NDS, 2018) - Section 4.3.6
-
\(C_fu \) : Flat-use factor. Assumed value:1. Refer to (2018 NDS, 2018) - Section 4.3.7
-
\(C_i \) : Incising factor. Recommended value: 1 for not incised. Refer to (2018 NDS, 2018) - Table 4.3.8
-
\(C_r \) : Repetitive member factor. Recommended value: 1 to be conservative. Refer to (2018 NDS, 2018) - Section 4.3.9
Calculations
Calculate the section modulus
S [in3] is calculated a:
- \( S = \frac{b \cdot d^2}{6} \)
Adjusted bending capacity
Adjusted bending capacity \( f'_b [psi] \) is calculated as:
- \( F'_{b} = F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_L \cdot C_F \cdot C_fu \cdot C_i \cdot C_r \)
Bending Strength
The bending strength \( M_{n} [kip-ft] \) is calculated as:
- \( M_{n} = F'_{b} \cdot S\)
Output Results
- Bending Strength, [kip-ft]
References
2018 NDS. (2018). American Wood Council. https://awc.org/publications/2018-nds/
2018 NDS Supplement. (2021). American Wood Council. https://awc.org/publications/2018-nds-supplement/
Breyer, D. E., Cobeen, K. E., & Martin, Z. (2017). [Design of Wood Structures ASD/LRFD Eighth Edition]. https://shop.iccsafe.org/design-of-wood-structures-asd-lrfd-eighth-edition.html
Validation
The validation was performed using Example 6.18 from (Breyer et al., 2017).